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Introduction: Wind-Wave Coupling

Early theoretical investigations (e.g., Jeffreys
1925; Miles 1957; Phillips 1957) into wind-wave
coupling focused on deriving growth rates
Most employed phase-averaging technique to
extract energy and momentum fluxes
This removes phase-dependent information such
as wave shape
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Figure 1: LES of pressure above a wave (Husain et al. 2019)

Numerical simulations have revealed airflow
properties above wave fields
But many prescribe fixed, sinusoidal wave profiles
Therefore, a new approach is needed to relate
wind and wave shape

Introduction: Wave Shape

Wave shape is important in many disciplines, e.g.,
beach morphodynamics and remote sensing
A few laboratory experiments have quantified
wind-speed dependent changes to wave shape
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Figure 2: Reproduced from Feddersen and Veron (2005)

Wind modifies skewness S (Cox and Munk
1956) and A asymmetry (Leykin et al. 1995)

S = 〈η3〉
〈η2〉3/2

and A = 〈H[η]3〉
〈H[η]2〉3/2

(1)

〈·〉 is an average over a wave period and H is the
Hilbert transform
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Introduction: Intermediate/Deep
Water (Zdyrski and Feddersen 2019)

Stokes wave ansatz (with wave amplitude a,
wave number k, and phase speed c)

ηk = (ak) sin[k(x− ct)]

+ 1
2
(ak)2A2 sin[2k(x− ct) + β]

(2)

Biphase β: phase shift between primary and
first harmonic (zero for unforced Stokes wave)
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Figure 3: Wind-induced biphase for two forcing types in
intermediate/deep water (Zdyrski and Feddersen 2019)

Decreasing kh amplifies wind-induced shape
change, motivating current study for kh < 1

Setup: Governing Equations

Profile η(x, t) and potential ∇φ(x, t, z) = ~u

Standard incompressibility, bottom boundary, and
surface boundary conditions
Pressure enters Bernoulli equation
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Choose Jeffreys-type forcing:
p(x, t) = P∂xη(x, t) (4)

Setup: Perturbation Expansion

Expand dependent variables in small parameter ε
η = η0 + εη1 + ε2η2 + . . .

Multiple Scales Method: use slower timescales
∂
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Collect orders of ε gives KdV-Burgers equation
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with c0 =
√
gh

P > 0 for onshore wind, P < 0 for offshore

Results: Solitary Profile
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Figure 4: Onshore and offshore winds acting on soliton profiles
kη as a function of distance kx at various times t

√
g/h,

shown in a frame moving with the unforced phase speed

As time increases, the top plot—depicting
onshore wind—shows a growing and
steepening effect, while the bottom, offshore
wind depicts a decaying and broadening effect
The wind induces horizontal asymmetry,
particularly apparent in the bottom plot

Results: Cnoidal Profile
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Figure 5: Onshore and offshore winds acting on cnoidal profiles
kη as a function of distance kx at various times t

√
g/h,

shown in a frame moving with the unforced phase speed

Unforced KdV equation also has periodic
“cnoidal” wave solutions
Onshore wind increases skewness; offshore
wind decreases it
Jeffreys onshore (offshore) forcing causes waves
to tilt backwards (forwards)

Results: Cnoidal Shape Parameters
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Figure 6: The height (normalized by the initial height),
skewness, and asymmetry of cnoidal waves as functions of the
nondimensional time t
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Height, skewness, and asymmetry given for
no wind, onshore wind, and offshore wind
Onshore breezes yield modest growth, an
increasing skewness, and a negative asymmetry
Offshore winds cause decreasing amplitude and
skewness, but increasing asymmetry

Summary

Coupled surface pressure to the Bernoulli Eq.
Method of Multiple Scales gave KdV-Burgers Eq.
Numerically calculated shape changes consistent
with casual observations
Surface pressure yields appreciable wave
shape changes in shallow water
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