UC San Diego

Key Points

- Perturbation techniques used to derive solitons in the Dirac fluid and Fermi liquid regimes of graphene
- Dissipative effects shown to cause solitons to slow and decay according to the Korteweg-de Vries-Burgers equation
- Background current included, allowing for new experiments to measure electron viscosity

Introduction: Solitons

- Localized disturbances propagating steadily
- Balance of **nonlinear focusing** and **dispersion**
- Prototype: Korteweg-de Vries (KdV) equation

$$\frac{\partial f}{\partial t} + f\frac{\partial f}{\partial x} + \frac{\partial^3 f}{\partial x^3} = 0$$

1-parameter (a) family of solutions

$$f(x,t) = a \operatorname{sech}^2\left(\sqrt{\frac{a}{12}}\left[x - t\frac{a}{3}\right]\right)$$
(1)

Introduction: Hydrodynamic Regime

Graphene is a two-dimensional sheet of carbon atoms that can be made pure enough to have a hydrodynamic regime. In fact, graphene has two hydrodynamic regimes: the low temperature, high voltage Fermi liquid regime $\mu \gg k_B T$, and the low voltage, high temperature **Dirac fluid** regime $k_B T \gg \mu$.

Voltage μ

Phase diagram of the Fermi liquid and Dirac fluid **Figure** 1 regimes of graphene. Inset figures depict dispersion cones with completely filled momentum modes and thermally excited momentum modes. Reproduced from Lucas and Fong [1].

In these hydrodynamic regimes, graphene has a large viscosity—more than 10x that of honey². Some measurements have been made in the Fermi regime², but data in the Dirac regime is lacking. Here, we propose viscometry experiments using solitons that are applicable in both the **Dirac and Fermi regimes**.

Figure 2: One-dimensional density wave propagation in graphene with velocity v.

Conducting plates (gates) are placed above/below the graphene sheet a distance d to make the electrostatic interaction short-ranged. The space between the graphene and the gates is filled with a **dielectric** κ .

Dissipative Solitons in Graphene Thomas Zdyrski¹ John McGreevy¹

¹Department of Physics, UC San Diego

Setup

Restricting to one-dimensional propagation, we will be solving for the charge carrier density n, the fluid velocity u, the pressure P and the energy ϵ .

$$E = \frac{2\pi e^2 d}{\kappa} \left(1 + d^2 \frac{\partial^2}{\partial x^2} \right) \frac{\partial n}{\partial x} + \mathcal{O}(d\partial_x)^4$$

Governing Equations

Charge Conservation:

$$\frac{\partial n}{\partial t} + \frac{\partial (nu)}{\partial x} = \frac{\sigma_Q}{e^2} \frac{\partial}{\partial x} \left[k_B T \frac{\partial}{\partial x} \left[\frac{\mu}{k_B T} \right] - e \frac{\partial E}{\partial x} \right] \quad (2)$$
Energy Conservation:

$$\frac{\partial \epsilon}{\partial t} + \frac{\partial [u(\epsilon + P)]}{\partial x} = -enEu$$
 (3)

Momentum Conservation: $\frac{\partial [u(\epsilon + P)]}{\partial t} + \frac{\partial P}{\partial x} + enE = (\eta + 2\zeta)^{2}$ (4)

Thermodynamic equation of state

Perturbation Expansion

Expand dependent variables in small parameter ε

$$n = n_0 + \varepsilon n_1 + \varepsilon^2 n_2 + \dots$$

Multiple Scales Method: introduce slower timescales $\frac{\partial}{\partial t} = \frac{\partial}{\partial t_0} + \varepsilon \frac{\partial}{\partial t_1} + \varepsilon^2 \frac{\partial}{\partial t_2} + \dots$

Collect order-by-order in ε and solve for n, giving the KdV-Burgers equation

$$\frac{\partial n_1}{\partial t_1} + \mathcal{A} \frac{\partial n_1}{\partial x} + \mathcal{B} n_1 \frac{\partial n_1}{\partial x} + \mathcal{C} \frac{\partial^3 n_1}{\partial x^3} = \mathcal{G} \frac{\partial^2 n_1}{\partial x^2}$$

• The dissipative term \mathcal{G} is a linear combination of the dissipative coefficients σ_Q , η , and ζ

Density

Energy is conserved at this order (eq. (3)). The entropy divergence $\partial_{\mu}s^{\mu}$, caused by **spreading**, shows that dissipation is concentrated on the front/rear faces.

Results

If dissipation is weak, solutions are approximately KdVtype solitons (eq. (1)) with time-dependent a:

$$a(t) = \frac{1}{1 + \varepsilon \frac{t}{t_d}} \quad \text{with} \quad t_d = \frac{45|\mathcal{C}|}{4\mathcal{G}|\mathcal{B}|}$$

This causes three changes: amplitude decay, widening, and deceleration.

Viscometry Proposal: Timing

Larger graphene samples needed for fast soliton propagation ($v \sim c/300$)

Email: tzdyrski@physics.ucsd.edu Web: physics.ucsd.edu/~tzdyrski

Viscometry Proposal: Amplitude

Direct measurement of amplitude decay also determines dissipation rate

Large background current u_0 counteracts propagation speed $v \sim c/300$

Stationary solitons are easier to measure

Only valid if graphene has free-slip boundary

Pulse Generator				Det	Detector		
ırce			Gate			nk	
Sol	Dielectric					Si	
Graphene							
Dielectric							
Gate							

Figure 5: Side view of proposed amplitude experiment.

Solitons previously derived for inviscid Fermi regime³ In this work, results have been extended to the viscous Dirac and Fermi regimes

- Inclusion of arbitrary background current allows solitons' propagation speed to be tuned
- Measurements of soliton decay rates or deceleration can yield experimental viscometry data

[1] A. Lucas and K. C. Fong, Journal of Physics: Condensed Matter **30**, 053001 (2018).

[2] D. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom, A. Tomadin, A. Principi, G. Auton, E. Khestanova, K. Novoselov, I. Grigorieva, et al., Science **351**, 1055 (2016). [3] D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, Physical Review B 88, 245444 (2013).

Acknowledgements

This work was supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under cooperative research agreement DE-SC0009919.

Contact Information

