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Key Points

Perturbation techniques used to derive solitons in
the Dirac fluid and Fermi liquid regimes of graphene
Dissipative effects shown to cause solitons to slow
and decay according to the Korteweg-de
Vries-Burgers equation
Background current included, allowing for new
experiments to measure electron viscosity

Introduction: Solitons

Localized disturbances propagating steadily
Balance of nonlinear focusing and dispersion
Prototype: Korteweg-de Vries (KdV) equation
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Introduction: Hydrodynamic Regime

Graphene is a two-dimensional sheet of carbon atoms
that can be made pure enough to have a hydrody-
namic regime. In fact, graphene has two hydrodynamic
regimes: the low temperature, high voltage Fermi liq-
uid regime µ � kBT , and the low voltage, high tem-
perature Dirac fluid regime kBT � µ.
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Figure 1: Phase diagram of the Fermi liquid and Dirac fluid
regimes of graphene. Inset figures depict dispersion cones with
completely filled momentum modes and thermally excited
momentum modes. Reproduced from Lucas and Fong [1].

In these hydrodynamic regimes, graphene has a large
viscosity—more than 10x that of honey2. Some mea-
surements have been made in the Fermi regime2, but
data in the Dirac regime is lacking. Here, we propose
viscometry experiments using solitons that are ap-
plicable in both the Dirac and Fermi regimes.

Setup

Restricting to one-dimensional propagation, we will be
solving for the charge carrier density n, the fluid
velocity u, the pressure P and the energy ε.
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Figure 2: One-dimensional density wave propagation in graphene
with velocity v.

Conducting plates (gates) are placed above/below
the graphene sheet a distance d to make the electro-
static interaction short-ranged. The space between the
graphene and the gates is filled with a dielectric κ.
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Governing Equations

Charge Conservation:
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Energy Conservation:
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Momentum Conservation:
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Thermodynamic equation of state

Perturbation Expansion

Expand dependent variables in small parameter ε
n = n0 + εn1 + ε2n2 + . . .

Multiple Scales Method: introduce slower timescales
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Collect order-by-order in ε and solve for n, giving
the KdV-Burgers equation
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The dissipative term G is a linear combination of
the dissipative coefficients σQ, η, and ζ

Results

If dissipation is weak, solutions are approximately KdV-
type solitons (eq. (1)) with time-dependent a:

a(t) = 1
1 + ε ttd

with td = 45|C|
4G|B|

This causes three changes: amplitude decay, widen-
ing, and deceleration.
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Figure 3: Soliton decay (a) and entropy generation (b) as
functions of time. The arrow represents a uniform background
current u0 to counter the initial propagation speed v0. All
quantities are nondimensionalized.

Energy is conserved at this order (eq. (3)). The en-
tropy divergence ∂µsµ, caused by spreading, shows
that dissipation is concentrated on the front/rear faces.

Viscometry Proposal: Timing
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Figure 4: Proposed experiment for measuring soliton deceleration.

Multiple detectors determine propagation speed
Deceleration determines dissipation rate
No background current u0 means simpler setup
Larger graphene samples needed for fast soliton
propagation (v ∼ c/300)

Viscometry Proposal: Amplitude

Direct measurement of amplitude decay also
determines dissipation rate
Large background current u0 counteracts
propagation speed v ∼ c/300
Stationary solitons are easier to measure
Only valid if graphene has free-slip boundary
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Figure 5: Side view of proposed amplitude experiment.

Summary

Solitons previously derived for inviscid Fermi regime3
In this work, results have been extended to the
viscous Dirac and Fermi regimes
Inclusion of arbitrary background current allows
solitons’ propagation speed to be tuned
Measurements of soliton decay rates or deceleration
can yield experimental viscometry data
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